Analytics: open middleware for multi-source and multi-target

 

Analytics: 

open middleware for multi-source and multi-target

Let's imagine that data visualization tools no longer have to manage the complexity of sources?

Let's imagine, conversely, that sources no longer have to worry about the diversity of data visualization tools?

 

With this in mind, we imagined oa-lake (and we implemented it in major accounts ): 😊

an orchestration and unification layer between data systems and business tools,  based on a distributed columnar & in-memory SQL engine.

 

 

oa-lake centralizes business logic and business rules in a single layer, independent of data visualization tools.
Visualization solutions (Looker, Power BI, Strategy, etc.) thus become simple query and display engines , relieved of the burden of modeling and business rules.

oa-lake is also able to reproduce the principle of semantic layer from one tool to another in a migration context — for example, from Business Objects to Power BI — by restoring business objects in a usable form and without loss of functional consistency.

At the heart of the platform, oa-lake is based on a distributed, columnar, in-memory SQL engine. Transformations are performed in flat SQL , without dependence on proprietary technology, with high scalability and incredible performance!
Thanks to Parquet storage, oa-lake acts as an intelligent cache : loads are optimized and the load on sources is reduced.

 

Commentaires

Posts les plus consultés de ce blog

E-book / Maîtriser & Simplifier une plateforme SAP BO avec {openAudit}

La 1ère action de modernisation d’un Système d'Information : Ecarter les pipelines inutiles ?

Migration Talend-dbt : un passeport pour moderniser ses données